

Electroweak Baryogenesis driven by an Axion-Like Particle

Chang Sub Shin (IBS-CTPU)

Based on work [arXiv:1806.02591, 1811.03294 [hep-ph]] with Kwang Sik Jeong (PNU) and Tae Hyun Jung (IBS-CTPU)

at the 5th international workshop on DM, DE, and Matt-antimatt Asymmetry Dec. 28, 2018

Idea of EWBG

Electroweak baryogenesis (EWBG)

Baryon asymmetry of the Universe should be answered by physics beyond the SM. However, the Higgs still can play an important role to trigger <u>EWBG by first order electroweak phase</u> <u>transition (EWPT)</u>.

Electroweak baryogenesis (EWBG)

Baryon asymmetry of the Universe should be answered by physics beyond the SM. However, the Higgs still can play an important role to trigger <u>EWBG by first order electroweak phase</u> <u>transition (EWPT)</u>.

EWBG 2 (2)

Extension for first order phase transition

Most of extensions beyond the SM focuses on realizing strong $1^{\rm st}$ order EWPT

(single field description)

(multi field description)

Extension for first order phase transition

Most of extensions beyond the SM to realize strong 1st order EWPT needs strong couplings (single field description) (multi field description)

1. Naturally safe from EDM and LHC constraints

2. New experimental searches for the evidence of EWBG?

With Axion-Like Particles (ALPs)

2. New experimental searches for the evidence of EWBG!

ALP landscapes

Theoretical motivations of ALP for various ranges of its mass and decay constant

Axionic EWBG

[Jeong, Jung, CSS 18]

Outline

ALP intro

- compact, light, suppressed by a large axion decay constant

Strong first order phase transition

- With only feeble interactions independently from a decay constant

Generation of baryon asymmetry

- Non-local, local electroweak baryogenesis depending on a decay constant

CP violating sources

- Dynamical Top Yukawa, Electroweak theta term

Experimental constraints

- Natural suppression of EDM.
- ALP searches (LHC, meson rare decays, Supernova cooling)

ALP intro (1)

ALP, a(x), is the scalar field in effective theories well below the scale f:

1) The SM singlet, and compact with a period: $2\pi f$

$$S[a] = S[a + 2\pi \mathbb{N}f]$$

ALP intro (2)

ALP, a(x), is the scalar field in effective theories well below the scale f:

2) Approximate continuous shifty symmetry $U(1)_{PQ}$

The potentials and interactions to explicitly break shift symmetry are generated at a scale (μ) much lower than f ($\mu \ll f$)

ALP intro (3)

а

All interactions between ALP and matters can be given by the combination of

A natural way to introduce higher dim. operators, weak couplings, and small mass of ALP E.g. for $\Lambda \ll f$

$$V(a) = -\Lambda^4 \cos\frac{a}{f} = \Lambda^4 + \frac{\Lambda^4}{2f^2} a^2 - \frac{\Lambda^4}{24f^4} a^4 + \frac{\Lambda^4}{720f^6} a^6 + \cdots$$

the ALP mass,

$$m_a = \frac{\Lambda^2}{f} \ll f$$
, Λ

the self coupling,

$$\lambda_{\text{quartic}} = \frac{\Lambda^4}{6f^4} \ll O(1)$$

Axion couplings to matters

$$\mathcal{L} \ni \frac{a}{16\pi^2 f} \left(c_G G \tilde{G} + c_W W \widetilde{W} + c_B B \tilde{B} \right) + x_q e^{i a/f} H Q_L q_R + h.c. + \cdots$$

The energy scale that we concern: $E \ll f \rightarrow \Gamma_{int} \propto (E/f)^2$

Axionic extension of the Higgs potential

A scalar potential is constructed by the Higgs and the angular field, $\theta(x) \equiv a(x)/f$

 $V(H,a) = V(H^+H, \sin\theta, \cos\theta).$

As an simple example with $\mu_1 \sim \mu_2 \sim \Lambda \sim O(m_W)$ (a UV model will is presented later)

$$V(H, \alpha) = \mu_1^2 |H|^2 + \lambda |H|^4 + \mu_2^2 \cos(\theta + \alpha) |H|^2 - \Lambda^4 \cos \theta.$$

Considering an expansion in terms of a/f,

$$V(h,a) = \frac{1}{2} \left(\mu^2 + c_1 \frac{\mu^2}{f} a + c_2 \frac{\mu^2}{f^2} a^2 + c_3 \frac{\mu^2}{f^3} a^3 + \cdots \right) h^2 + \frac{\lambda}{4} h^4 + \frac{\Lambda^4}{2f^2} a^2 - \frac{\Lambda^4}{24f^4} a^4 + \frac{\Lambda^4}{720f^6} a^6 + \cdots \right)$$

The couplings between ALP and the Higgs are suppressed for $m_W \ll f$.

Tadpole, cubics and higher dimensional operators can be systematically introduced without worrying about stability of the scalar potential.

A strong 1st order EWPT can be realized!

Schematic description of the potential

The scalar potential can be written as $V(h,\theta) = \tilde{V}(\theta) + \frac{1}{2}m^2(\theta)h^2 + \frac{\lambda}{4}h^4$.

Schematic description of the potential

The scalar potential can be written as $V(h,\theta) = \tilde{V}(\theta) + \frac{1}{2}m^2(\theta)h^2 + \frac{\lambda}{4}h^4$.

The potential is bounded from below due to the periodicity of the axion dependence

Schematic description of EWPT

The scalar potential can be written as $V_T(h,\theta) = \tilde{V}(\theta) + \frac{1}{2}(m^2(\theta) + cT^2)h^2 + \frac{\lambda}{4}h^4$ for a large value of f ($T \le m_W \ll f$), since the axion is not thermalized. at $0 < T < T_c$

Schematic description of EWPT

Schematic description of EWPT

Strong first order EWPT

Non-local generation of baryon asymmetry

Most of baryons are generated at symmetric phase after CP violating diffusion

Local generation of baryon asymmetry

Adiabatically generated inside the bubble wall by Higgs dependent chemical potential

$$\frac{dn_B}{dt} + 3Hn_B = \frac{\Gamma_{sph}(h)}{T} \left(\mu_B(h) - c_0 \frac{n_B}{T^2} \right)$$
non-zero chemical potential
inside a bubble wall
$$\frac{l_L}{q_L}$$

$$\frac{l_L}{q_L}$$

$$\frac{l_L}{q_L}$$

$$\frac{l_L}{v(T_n)} = 1$$

$$\frac{q_L}{v_W L_W \gg 100/T_n}$$

f determines the bubble wall width

CP violation

CP violating source (which depends on the bubble wall profile) from

$$\mathcal{L}_{CPV} \ni \frac{a}{f} \, \mathcal{O}_{SM}(x)$$

During phase transition ($\Delta h \sim O(m_W)$), $\Delta \theta = \Delta a/f \sim O(1)$ even for a very large f : <u>Enhancing CPV effects</u>

Examples:

1) Dynamical top Yukawa coupling [1806.02591]

$$Y_t(\theta)h t_L t_R + h.c., \quad \text{where} \quad Y_t(\theta) = (y_t + x_t e^{i\theta})$$

2) Dynamical electroweak theta-term [1811.03294] $(\mu_B \propto \dot{\theta}) \leftarrow \frac{g_2^2 \Theta(\theta)}{16\pi^2} \operatorname{Tr}[W_{\mu\nu} \widetilde{W}^{\mu\nu}], \quad \text{where } \Theta(\theta) = \theta$

$$\left(\partial_{\mu}J_{B}^{\mu}\right) = \frac{N_{f}}{8\pi^{2}}\left(W_{\mu\nu}\widetilde{W}^{\mu\nu} - B_{\mu\nu}\widetilde{B}^{\mu\nu}\right)$$

An UV example (1)

$$(y_t + x_t e^{i\theta})h t_L t_R + h.c.$$

As a UV model, we can propose that the PQ symmetry is anomalously broken by hidden sector confining gauge symmetry.

An UV example (2)

$$(y_t + x_t e^{i\theta})h t_L t_R + h.c.$$

As a UV model, we can propose that the PQ symmetry is anomalously broken by hidden sector confining gauge symmetry.

Results

For $f \sim O(1-10)$ TeV $(y_t + x_t e^{i\theta})h t_L t_R$

After integrating out top and Higgs, ALP couplings to <gluon, photon, light quark and lepton> are generated. Model dependent (axion decay channels) constraints are applied

$$\mathcal{L}_{eff} = \frac{1}{16\pi^2} \frac{(\delta a)}{f} \left(c_1 G_{\mu\nu} \tilde{G}^{\mu\nu} + c_2 F_{\mu\nu} \tilde{F}^{\mu\nu} + \cdots \right) + \frac{\delta a}{f} \delta_{\min} m_q \bar{q} q + \frac{\delta a}{f} \delta_{\min} m_\ell \bar{\ell} \ell$$

Axion with mass around (5 - 10)GeV is model independently safe.

[[]Jaeckel, Spannowsky 15]

After integrating out top and Higgs, ALP couplings to <gluon, photon, light quark and lepton> are generated. Model dependent (axion decay channels) constraints are applied

$$\mathcal{L}_{eff} = \frac{1}{16\pi^2} \frac{(\delta a)}{f} \left(c_g G_{\mu\nu} \tilde{G}^{\mu\nu} + c_\gamma F_{\mu\nu} \tilde{F}^{\mu\nu} + \cdots \right) + \frac{\delta a}{f} \delta_{\min} m_q \bar{q} q + \frac{\delta a}{f} \delta_{\min} m_\ell \bar{\ell} \ell$$

Axion with mass around (5 - 10)GeV is model independently safe.

After integrating out top and Higgs, ALP couplings to <gluon, photon, light quark and lepton> are generated. Model dependent (axion decay channels) constraints are applied

$$\mathcal{L}_{eff} = \frac{1}{16\pi^2} \frac{(\delta a)}{f} \left(c_1 G_{\mu\nu} \tilde{G}^{\mu\nu} + c_2 F_{\mu\nu} \tilde{F}^{\mu\nu} + \cdots \right) + \frac{\delta a}{f} \delta_{\text{mix}} m_q \bar{q} q + \frac{\delta a}{f} \delta_{\text{mix}} m_\ell \bar{\ell} \ell$$

Axion with mass around (5 - 10)GeV is model independently safe. Interesting hints for $m_a \sim 10 - 20$ GeV

For f > O(10 - 100) TeV $\frac{g_2^2 \theta}{16\pi^2} \operatorname{Tr}[W_{\mu\nu} \tilde{W}^{\mu\nu}]$

Baryon asymmetry is nearly independent of f for $f < O(10^7 \text{ GeV})$

There is the interesting allowed window for $f \sim 10^6 - 10^7 \text{ GeV} (m_a \sim 5 - 100 \text{ MeV})$

Conclusions

- Axionic extension of the Higgs potential gives new parameter spaces for singlet extensions of EWBG: weakly coupled, controllable higher dimensional operators.
- EWPT and its cosmological evolution show different features compared to usual EWBS models: We can get stronger first order phase transition to compensate large bubble wall effects.
- Non-local and local baryogenesis can be realized depending on the axion decay constant.
- Interesting mass ranges of the ALP mass between 5-20 GeV and 5-100MeV are motivated by EWBG for the target of future ALP searches.